honcho Documentation
Release 1.0.1

Nick Stenning

Nov 18, 2018






Contents

Documentation index

1.1 Using Procfiles . . . . . . . . . e e e e e e

LLL Syntax . . .o o o e e e e e e e e e e e e e e

1.1.2 Environment files . . . . . . . . . L. e

1.1.3  UsingHoncho . . . . . . . . . . e

1.1.4 Differences to Foreman . . . . . . . . . . . ... e

1.1.4.1  No honcho run {target} . . . . . . . . . i e e e

1.1.4.2 Bufferedoutput . . . . . . . ...

1.2 EXPOrting . . . . o o o o e e e e e e e e e e e e e e e e e

1.2.1 Examples . . . . . . e e e e e e e e

1.2.2  Adding support for new export formats . . . . . .. ... Lo

1.3 Contributing . . . . . . . o o e e e e e e e e e e e e

1.3.1  Typesof Contributions . . . . . . . . . . . . i i i e e e e e e e

1.3.1.1 ReportBugs . . . . . . . ..

1.3.1.2  FixBugs . . . . o o e e

1.3.1.3 TImplement Features . . . . . . . . . . . . ... e

1.3.1.4  Write Documentation . . . . . . . . . .. ... e

1.3.1.5 SubmitFeedback . . . .. ... ... . ... ..

1.3.2  GetStarted! . . . . .o e

1.3.3  Pull Request Guidelines . . . . . . . . . . . . e

134 TIPS .« o o o o e e e e

1.4 APIDocumentation . . . . . . . . . . i it e e e e e e e e e e e

LS5 Credits . . . . . o e e e e e e e

1.5.1 DevelopmentLead . . . . ... ... ... ...

1.52  Contributors . . . . . . . L e e e e e e e e e e e e e e e
What are Procfiles?

Why did you port Foreman?
Installing Honcho
Further reading and assistance

Indices and tables

Python Module Index

o e le N N e N B\ lo NV, BV, BV, BV, B0 I SRS SRS RRON R ]

el

13

15

17

19

21

23







honcho Documentation, Release 1.0.1

Welcome! This is the home of Honcho and its documentation. Honcho is:

1. A Python port of David Dollar’s Foreman: a command-line application which helps you manage and run

Procfile-based applications. It helps you simplify deployment and configuration of your applications in both
development and production environments.

2. Secondarily, Honcho is a Python library/API for running multiple external processes and multiplexing their
output.

The current version of Honcho is 1.0.1 and it can be downloaded from GitHub or installed using pip: see Installing
Honcho.

Contents 1


https://github.com/ddollar
http://ddollar.github.com/foreman
https://devcenter.heroku.com/articles/procfile
https://github.com/nickstenning/honcho

honcho Documentation, Release 1.0.1

2 Contents



CHAPTER 1

Documentation index

1.1 Using Procfiles

As described in What are Procfiles?, Procfiles are simple text files that describe the components required to run an
application. This document describes some of the more advanced features of Honcho and the Procfile ecosystem.

1.1.1 Syntax

The basic syntax of a Procfile is described in the Heroku Procfile documentation. In summary, a Procfile is a plain text
file placed at the root of your applications source tree that contains zero or more lines of the form:

<process type>: <command>

The process type is a string which may contain alphanumerics and underscores ([A-Za-z0-9_]+), and
uniquely identifies one type of process which can be run to form your application. For example: web, worker,
ormy_process_123.

command is a shell commandline which will be executed to spawn a process of the specified type.

1.1.2 Environment files

You can also create a . env file alongside your Procfile which contains environment variables which will be available
to all processes started by Honcho:

$ cat >.env <<EOF

RACK_ENV=production
ASSET_ROOT=https://myapp.s3.amazonaws.com/assets
PROCFILE=Procfile

EOF

In addition to the variables specified in your .env file, the subprocess environment will also contain a
HONCHO_PROCESS_NAME variable that will be set to a unique string composed of the process name as defined



https://devcenter.heroku.com/articles/procfile#declaring-process-types

honcho Documentation, Release 1.0.1

in the Procfile and an integer counter that is incremented for each concurrent process of the same type, for example:
web.1,web.2, queue. 1, etc.

As shown, you may choose to specify your Procfile in the . env file. This takes priority over the default Procfile, but
you can still use —£ to replace which Procfile to use.

Typically, you should not commit your .env file to your version control repository, but you might wish to create a
.env.example so that others checking out your code can see what environment variables your application uses.

For more on why you might want to use environment variables to configure your application, see Heroku’s article on
configuration variables and The Twelve-Factor App’s guidance on configuration.

1.1.3 Using Honcho

To see the command line arguments accepted by Honcho, run it with the ——he 1p option:

$ honcho —--help

usage: honcho [-h] [-e ENV] [-d DIR] [--no-colour] [--no-prefix] [-f FILE]
[-Vv]
{check, export, help, run, start,version}

Manage Procfile-based applications

optional arguments:
-h, —--help show this help message and exit
-e ENV, —-—-env ENV environment file[,file] (default: .env)
-d DIR, —-—app-root DIR
procfile directory (default: .)
—-—-no-colour disable coloured output
—--no-prefix disable logging prefix
-f FILE, —--procfile FILE
procfile path (default: Procfile)

-v, —-version show program's version number and exit
tasks:

{check, export,help, run, start, version}
check validate a Procfile
export export a Procfile to another format
help describe available tasks or one specific task
run run a command using your application's environment
start start the application (or a specific PROCESS)
version display honcho version

You will notice that by default, Honcho will read a Procfile called Procfile from the current working directory,
and will read environment from a file called . env if one exists. You can override these options at the command line
if necessary. For example, if your application root is a level above the current directory and your Procfile is called
Procfile.dev, you could invoke Honcho thus:

$ honcho -d .. —-f Procfile.dev start
16:14:49 web.1l | started with pid 1234

If you supply multiple comma-separated arguments to the —e option, Honcho will merge the environments provided
by each of the files:

$ echo 'ANIMAL_l=giraffe' >.env.one
$ echo 'ANIMAL_2=elephant' >.env.two

(continues on next page)

4 Chapter 1. Documentation index



https://devcenter.heroku.com/articles/config-vars
http://12factor.net/config

honcho Documentation, Release 1.0.1

(continued from previous page)

$ honcho -e .env.one, .env.two run sh -c 'env | grep —-i animal’
ANIMAL_l=giraffe
ANIMAL_2=elephant

1.1.4 Differences to Foreman

One of the curses of maintaining a “clone” of someone else’s program is that you are forever asked to reimplement
whatever questionable features upstream has introduced. So, while Honcho is based heavily on the Foreman project,
there are some important differences between the two tools, some of which are simply the result of differences between
Ruby and Python, and others are matters of software design. The following is a non-exhaustive list of these differences:

1.1.4.1 No honcho run {target}

Foreman allows you to specify a Procfile target to both the start and run subcommands. To me, it seems obvious that
this functionality belongs only in honcho start, a command that always reads the Procfile and has no other use for its
ARGYV, as opposed to honcho run, which is intended for running a shell command in the environment provided by
Honcho and .env files. Because I don’t have to guess at whether or not ARGV is a process name or a shell command,
honcho start even supports multiple processes: honcho start web worker.

1.1.4.2 Buffered output

By default, Python will buffer a program’s output more aggressively than Ruby when a process has STDOUT connected
to something other than a TTY. This can catch people out when running Python programs through Honcho: if the
program only generates small amounts of output, it will be buffered, unavailable to Honcho, and will not display.

One way around this is to set the PYTHONUNBUFFERED environment variable in your Procfile or your . env file.
Be sure you understand the performance implications of unbuffered I/O if you do this.

For example:

’myprogram: PYTHONUNBUFFERED=true python myprogram.py

1.2 Exporting

Honcho allows you to export your Procfile configuration into other formats. Basic usage:

’$ honcho export FORMAT LOCATION

Exporters for upstart and supervisord formats are shipped with Honcho.

1.2.1 Examples

The following command will create a myapp . conf file in the /etc/supervisor/conf.d directory:

$ honcho export —a myapp supervisord /etc/supervisor/conf.d

Or, for the upstart exporter:

1.2. Exporting 5


https://github.com/ddollar/foreman

honcho Documentation, Release 1.0.1

$ honcho export —-a myapp upstart /etc/init

By default, one of each process type will be started. You can change this by specifying the ——concurrency option
to honcho export.

1.2.2 Adding support for new export formats

You can add support for new export formats by writing plugins. Honcho discovers export plugins with the entry points
mechanism of setuptools. Export plugins take the form of a class with render and get_template_loader
methods that inherits from honcho. export.base.BaseExport. Inside the render () method, you can fetch
templates using the ~honcho.export.base. BaseExport.get_template method.

For example, here is a hypothetical exporter that writes out simple shell scripts for each process:

import jinja2
from honcho.export.base import BaseExport
class SimpleExport (BaseExport) :
def get_template_loader (self):
return Jjinja2.Packageloader (package_name=__package__,

package_path='templates')

def render (self, processes, context):
tpl = get_template('run.sh'")

for p in processes:

filename = 'run-{0}.sh'.format (p.name)
ctx = context.copy ()

ctx['process'] = p

script = tpl.render (ctx)

By writing an exporter in this way (specifically, by inheriting BaseExport), you make it possible for users of your
exporter to override the exporter’s default templates using the ——template-dir option to honcho export.

In order for your export plugin to be detected by Honcho, you will need to register your exporter class under the
honcho_exporters entrypoint. If we were shipping our hypothetical SimpleExport class in a package called
honcho_export_simple, our setup.py might look something like the following:

from setuptools import setup

setup (
name='honcho_export_simple',

entry_points={
'honcho_exporters': [
'simple=honcho_export_simple:SimpleExport’,
JV
}I

After installing the package, the new export format will be shown by the honcho export command.

6 Chapter 1. Documentation index



https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

honcho Documentation, Release 1.0.1

1.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.3.1 Types of Contributions

1.3.1.1 Report Bugs

Report bugs at https://github.com/nickstenning/honcho/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

1.3.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

1.3.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

1.3.1.4 Write Documentation

Honcho could always use more documentation, whether as part of the official honcho docs, in docstrings, or even on
the web in blog posts, articles, and such.

1.3.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/nickstenning/honcho/issues.
If you are proposing a feature:

 Explain in detail how it would work.

* Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.3.2 Get Started!

Ready to contribute? Here’s how to set up honcho for local development.
1. Fork the honcho repo on GitHub.
2. Clone your fork locally:

1.3. Contributing 7


https://github.com/nickstenning/honcho/issues
https://github.com/nickstenning/honcho/issues

honcho Documentation, Release 1.0.1

$ git clone git@github.com:your_name_here/honcho.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv honcho
$ cd honcho/
S pip install -e .[export] tox

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests, including testing other Python
versions with tox and just run:

$ tox

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

1.3.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function or
class with a docstring.

3. The pull request should work for Python 2.6, 2.7, 3.2 and 3.3 and for PyPy. Check https://travis-ci.org/
nickstenning/honcho/pull_requests and make sure that the tests pass for all supported Python versions.

1.3.4 Tips

If you’d like to run a specific tox environment just use —e flag e.g.:

’tox -e py27 ‘

This will run tests using python2.7 interpreter.

To list all available tox environments run:

o \

Honcho’s tox setup uses pytest to run the test suite. You can pass positional arguments to a pytest command within
tox. For example, if you’d like to use pytest’s —x flag (stop after first error) with a PyPy interpreter you could do this:

8 Chapter 1. Documentation index



https://travis-ci.org/nickstenning/honcho/pull_requests
https://travis-ci.org/nickstenning/honcho/pull_requests
https://pytest.org/

honcho Documentation, Release 1.0.1

’tox -e pypy —— —X

1.4 APl Documentation

class honcho.process.Popen (cmd, **kwargs)
Bases: subprocess.Popen

class honcho.process.Process (cmd, name=None, colour=None, quiet=False, env=None,

cwd=None)
Bases: object

A simple utility wrapper around a subprocess.Popen that stores a number of attributes needed by Honcho and
supports forwarding process lifecycle events and output to a queue.

run (events=None, ignore_signals=False)

class honcho.environ.Env
Bases: object

kill (pid)
now ()
terminate (pid)

class honcho.environ.ProcessParams (name, cmd, quiet, env)
Bases: tuple

cmd
Alias for field number 1

env
Alias for field number 3

name
Alias for field number O

quiet
Alias for field number 2

class honcho.environ.Procfile
Bases: object

A data structure representing a Procfile
add_process (name, command)

honcho.environ.expand processes (processes, concurrency=None, env=None, quiet=None,

port=None)
Get a list of the processes that need to be started given the specified list of process types, concurrency, environ-

ment, quietness, and base port number.

Returns a list of ProcessParams objects, which have name, cmd, env, and quiet attributes, corresponding to the
parameters to the constructor of honcho.process.Process.

honcho.environ.parse (content)
Parse the content of a .env file (a line-delimited KEY=value format) into a dictionary mapping keys to values.

honcho.environ.parse_procfile (contents)

1.4. API Documentation 9



honcho Documentation, Release 1.0.1

class honcho.manager .Manager (printer=None)
Bases: object

Manager is responsible for running multiple external processes in parallel managing the events that result (start-
ing, stopping, printing). By default it relays printed lines to a printer that prints to STDOUT.

Example:

import sys
from honcho.manager import Manager

m = Manager ()

m.add_process ('server', 'ruby server.rb')
m.add_process ('worker', 'python worker.py')
m.loop ()

sys.exit (m.returncode)

add_process (name, cmd, quiet=False, env=None, cwd=None)
Add a process to this manager instance. The process will not be started until Zoop () is called.

kill ()
Kill all processes managed by this ProcessManager.

loop ()
Start all the added processes and multiplex their output onto the bound printer (which by default will print
to STDOUT).

If one process terminates, all the others will be terminated by Honcho, and Ioop () will return.
This method will block until all the processes have terminated.
returncode = None

terminate ()
Terminate all processes managed by this ProcessManager.

class honcho.export.base.BaseExport (template_dir=None, template_env=None)
Bases: object

get_template (path)
Retrieve the template at the specified path. Returns an instance of Jinja2.Template by default, but
may be overridden by subclasses.

get_template_loader ()
render (processes, context)

class honcho.export.base.File (name, content, executable=False)
Bases: object

honcho.export .base.dashrepl (value)
Replace any non-word characters with a dash.

honcho.export .base.percentescape (value)
Double any % signs.

class honcho.export.supervisord.Export (template_dir=None, template_env=None)
Bases: honcho.export.base.BaseExport

get_template_loader ()

render (processes, context)

10 Chapter 1. Documentation index



honcho Documentation, Release 1.0.1

class honcho.export.upstart .Export (template_dir=None, template_env=None)
Bases: honcho.export.base.BaseExport

get_template_loader ()

render (processes, context)

1.5 Credits

1.5.1 Development Lead

* Nick Stenning <nick @whiteink.com>

1.5.2 Contributors

* Jannis Leidel <jannis @leidel.info>
e Marc Abramowitz (@msabramo) <marc @marc-abramowitz.com> - maintainer
¢ Stawomir Ehlert (@slafs) <slafs.e @gmail.com> - maintainer
* Jiangge Zhang

* Thomas Orozco

* Alex Morega

¢ Igor Davydenko

* Alen Mujezinovic

* Jean-Philippe Serafin

* Alejandro Varas

* Hannes Struss

* Jeethu Rao

* Jokull Sélberg Audunsson

¢ Andrii Kurinnyi

* Chad Whitacre

* Hyunjun Kim

* Jesse Pollak

* Mark Burnett

* Miguel Grinberg

* Pepijn de Vos

¢ Philippe Ombredanne

1.5. Credits

11


mailto:nick@whiteink.com
mailto:jannis@leidel.info
mailto:marc@marc-abramowitz.com
mailto:slafs.e@gmail.com

honcho Documentation, Release 1.0.1

12 Chapter 1. Documentation index



CHAPTER 2

What are Procfiles?

A Procfile is a file which describes how to run your application. If you need to run a simple web application, you
might have a Procfile that looks like this:

’web: python myapp.py

You’d then be able to run your application using the following command:

’$ honcho start

Now, if running your application is as simple as typing python myapp .py, then perhaps Honcho isn’t that useful.
But imagine that a few months have passed, and running your application is now substantially more complicated. You
need to have the following running in parallel: a web server, a high priority job queue worker, and a low priority job
queue worker. In addition, you’ve established that you need to run your application under a proper web server like
gunicorn. Now the Procfile starts to be useful:

web: gunicorn -b "0.0.0.0:SPORT" —-w 4 myapp:app
worker: python worker.py —-priority high,med, low
worker_low: python worker.py --priority med, low

Again, you can start all three processes with a single command:

$ honcho start

As you add features to your application, you shouldn’t be forced to bundle everything up into a single process just to
make the application easier to run. The Procfile format allows you to specify how to run your application, even when
it’s made up of multiple independent components. Honcho (and Foreman, and Heroku) can parse the Procfile format
and run your application.

13


https://devcenter.heroku.com/articles/procfile
http://gunicorn.org/
http://ddollar.github.com/foreman
https://heroku.com/

honcho Documentation, Release 1.0.1

14 Chapter 2. What are Procfiles?



CHAPTER 3

Why did you port Foreman?

Foreman is a great tool, and the fact I chose to port it to Python shouldn’t be interpreted as saying anything negative
about Foreman. But I've worked in Python-only development environments, where installing Ruby just so I can run
Procfile applications seemed a bit crazy. Python, on the other hand, is part of the Linux Standard Base, and so even in
“Ruby-only” environments, Python will still be around.

(Oh, and I also I wanted to learn about asynchronous I/O in Python.)

15


http://ddollar.github.com/foreman
http://en.wikipedia.org/wiki/Linux_Standard_Base
http://docs.python.org/library/select.html
http://docs.python.org/library/queue.html

honcho Documentation, Release 1.0.1

16 Chapter 3. Why did you port Foreman?



CHAPTER 4

Installing Honcho

If you have a working Python and pip installation, you should be able to simply

pip install honcho

and get a working installation of Honcho. You can probably also easy_install honcho. But please, don’t: get
with the program.

17


http://www.pip-installer.org/en/latest/index.html
http://www.pip-installer.org/en/latest/index.html
http://www.pip-installer.org/en/latest/index.html

honcho Documentation, Release 1.0.1

18 Chapter 4. Installing Honcho



CHAPTER B

Further reading and assistance

For more about the Procfile format, . env files, and command-line options to Honcho, see Using Procfiles.

If you have any difficulty using Honcho or this documentation, please get in touch with me, Nick Stenning, on Twitter
at @nickstenning or by email: <my first name> at whiteink dot com.

19


https://twitter.com/nickstenning

honcho Documentation, Release 1.0.1

20

Chapter 5. Further reading and assistance



CHAPTER O

Indices and tables

* genindex
* modindex

e search

21



honcho Documentation, Release 1.0.1

22

Chapter 6. Indices and tables



Python Module Index

h

honcho.
honcho.
.export.supervisord, 10

honcho

honcho.
.manager, 9

honcho

honcho.

environ,9
export .base, 10

export.upstart, 10

process,9

23



honcho Documentation, Release 1.0.1

24

Python Module Index



Index

A

add_process() (honcho.environ.Procfile method), 9
add_process() (honcho.manager.Manager method), 10

B

BaseExport (class in honcho.export.base), 10

C

cmd (honcho.environ.ProcessParams attribute), 9

D

dashrepl() (in module honcho.export.base), 10

E

Env (class in honcho.environ), 9

env (honcho.environ.ProcessParams attribute), 9
expand_processes() (in module honcho.environ), 9
Export (class in honcho.export.supervisord), 10
Export (class in honcho.export.upstart), 10

F

File (class in honcho.export.base), 10

G

get_template() (honcho.export.base.BaseExport method),
10
get_template_loader()
method), 10
get_template_loader() (honcho.export.supervisord. Export
method), 10
get_template_loader()
method), 11

(honcho.export.base.BaseExport

(honcho.export.upstart. Export

H

honcho.environ (module), 9
honcho.export.base (module), 10
honcho.export.supervisord (module), 10
honcho.export.upstart (module), 10

honcho.manager (module), 9
honcho.process (module), 9

K

kill() (honcho.environ.Env method), 9
kill() (honcho.manager.Manager method), 10

L

loop() (honcho.manager.Manager method), 10

M

Manager (class in honcho.manager), 9

N

name (honcho.environ.ProcessParams attribute), 9
now() (honcho.environ.Env method), 9

P

parse() (in module honcho.environ), 9
parse_procfile() (in module honcho.environ), 9
percentescape() (in module honcho.export.base), 10
Popen (class in honcho.process), 9

Process (class in honcho.process), 9

ProcessParams (class in honcho.environ), 9
Procfile (class in honcho.environ), 9

Q

quiet (honcho.environ.ProcessParams attribute), 9

R

render() (honcho.export.base.BaseExport method), 10
render() (honcho.export.supervisord.Export method), 10
render() (honcho.export.upstart. Export method), 11
returncode (honcho.manager.Manager attribute), 10
run() (honcho.process.Process method), 9

T

terminate() (honcho.environ.Env method), 9
terminate() (honcho.manager.Manager method), 10

25



	Documentation index
	Using Procfiles
	Syntax
	Environment files
	Using Honcho
	Differences to Foreman
	No honcho run {target}
	Buffered output


	Exporting
	Examples
	Adding support for new export formats

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips

	API Documentation
	Credits
	Development Lead
	Contributors


	What are Procfiles?
	Why did you port Foreman?
	Installing Honcho
	Further reading and assistance
	Indices and tables
	Python Module Index

